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Abstract

This paper explores the view that numbers are symbolically constituted, that
numbers just are meaningful symbols. Such a view is what results if we take
the conception of number spelled out by Husserl in the second part of his
Philosophy of Arithmetic to be self-standing rather than supported by the
conception of numbers as abstracted from sets. It will be argued that this
latter conception is problematic in itself and, moreover, that it cannot be
regarded as providing a foundation for the former.
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Each of the two parts of Husserl’s Philosophy of
Arithmetic (Husserl 1891) presents a separate conception of
numbers. According to the first conception, numbers are
abstractions from sets; according to the second conception,
numbers are mirror images of symbols and cannot be thought of
independently of a system of symbols. Husserl regarded the two
conceptions as connected. In particular, he regarded the first
conception as a foundation for the second: numbers as
understood by the second conception form a superstructure
built on top of numbers as understood by the first. Owing to our
limitations in forming real, or authentic, representations of
sets, we are for the most part relegated to this superstructure.
In fact, arithmetic as we know it moves entirely within this
superstructure.

* While writing this paper the author was financially supported by grant nr.
17-18344Y from the Czech Science Foundation, GACR.
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After giving a brief sketch of these two conceptions of
number as spelled out in the Philosophy of Arithmetic, 1 shall
question whether they in fact are connected in the way Husserl
thought. A negative verdict leads me to explore the second
conception of number as self-standing. Thus I shall explore the
thesis that numbers are symbolically constituted objects, that
numbers in effect just are meaningful symbols. The qualifier
“meaningful” is important here: the philosophy of arithmetic to
be explored is not formalism, namely the thesis that the real
objects of mathematics are all finitary, such as strokes and
rows of strokes; rather, the non-finitary notion of meaning will
be invoked. Whether the resulting philosophy of mathematics
has any affinity with Husserl’s thought on mathematics, I shall
not discuss in any detail; but it does seem to me to be an
eminently phenomenological philosophy of mathematics. There
are also interesting connections to the type theory of Per
Martin-Lof, some of which will be noted.

1. According to the conception of number spelled out in
the first part of the Philosophy of Arithmetic numbers are
abstractions from sets (15-16.).! For instance, from the set
{redness, the Moon, Napoleon} the number 3 is abstracted, and
from the set of the Apostles the number 12 is abstracted.
Husserl provides a detailed psychological description of set
conception, or set constitution. What makes a representation
into a representation of a set is a certain relation, or connection,
that obtains between certain parts of the representation that
are clearly distinguished from each other (what will become the
elements of the set) (20). Much effort is spent on characterizing
this relation, which Husserl calls the collective connection
(kollektive Verbindung). It is, for instance, not the relation of
compresence in one consciousness; nor the relation of temporal
succession; nor that of sameness or of difference (64). Rather, it
is a peculiar relation that is established by an intention
directed towards clearly distinguished parts of the
representation and that, as it were, holds these parts together.
What are to become the elements of the set are all parts of the
given representation; but, simply by being parts of a
representation, they are still not represented as elements of a
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set; rather, it takes a second-order intention directed towards
these elements to form the set representation (74).

Given such a set representation one can (according to
Husserl’s abstraction theory) disregard the particular nature of
each of its elements and concentrate entirely on the collective
connection itself (79). The result is a representation of what
Husserl calls a plurality form (Vielheitsform), which we may
symbolize in language as “something and something and
something...” (80). Each occurrence here of the word
“something” indicates an arbitrary object, and the ellipsis
indicates indeterminacy, namely that the same pattern may
continue arbitrarily long (81). Corresponding to the plurality
form is the concept of plurality (Husserl is not clear about how
to understand the relation between the form and the concept).
The concept inherits the indeterminacy of the form (81). Any
particular determination of the concept of plurality is a
particular number, for instance 3 or 12. Borrowing a famous
piece of terminology—though perhaps not the associated
doctrine—from (Johnson 1921), we may call the concept of
plurality a determinable whose determinations are particular
numbers. Particular numbers are in turn described as species of
the general concept of number, which concept we obtain by
noting the similarity of particular numbers with each other
(82). The relation between the general concept of number and
particular numbers is therefore one of specification, whereas
the relation between the concept of plurality and particular
numbers is one of determination.

2. According to Husserl’s other conception of number,
numbers are the mirror images of numerical expressions. Thus,
in the second part of the Philosophy of Arithmetic Husserl
repeatedly speaks about a parallelism that obtains between
number concepts and number signs (e.g. 228, 234, 237-241): the
development of a system of number signs is at the same time a
development of number concepts. The build-up of the signs
mirrors the build-up of the concepts; in particular, the
successive construction of number signs mirrors the succession
of the number concepts. It is clear that the resulting conception
of number is entirely different from the first conception. Here
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there 1s no reliance on sets, nor on abstraction. Rather,
numbers are here conceived as elements of an ordered
sequence, in which each element presupposes its predecessors.
A number as abstracted from a set does, by contrast, not thus
presuppose its predecessors, but only a set to abstract on.
Whereas the first conception is thus a conception of cardinal
number, the second conception is a conception of ordinal
number.

The system of signs through which numbers are
introduced provides a unique expression for each number (260).
Numbers represented by these introductory expressions are
called normal (261). For instance, in the standard decimal
system the normal numbers are 0, 1, 2, 3,..., 10, 11, 12,..., 100,
101, 102,... Numbers not given in normal form are called
problematic; examples are 2 + 3 and 7 X 5. Each problematic
number presents us with a task, namely that of reduction to
normal form (261). When the decimal numbers are taken to be
the normal numbers, then the reduction of 2 + 3, for instance,
yields 5, and the reduction of 7 X 5 yields 35. Reduction is thus
just what we usually call calculation (258). A basic task of
arithmetic is to delineate the various ways of forming
problematic numbers and describe the methods of reducing
numbers thus formed to normal numbers, that is, to describe
methods of calculation (262). Given the parallelism between
number signs and number concepts, calculation may be carried
out on signs alone without regard to their content, since rules
regarding signs will directly translate into rules regarding their
content. The rules of manipulating signs are thus sound with
respect to their intended content. Husserl considers in detail
rules of calculation associated with the usual arithmetical
operations—addition, multiplication, subtraction, division—and
argues that these rules are indeed sound (264-272).2

3. A central thesis in the Philosophy of Arithmetic is that
the two conceptions of number just described are in fact
connected. The first conception describes numbers as they are
given to us “authentically” (e.g. 15-16). In an authentic
representation, a number is given to us just as it is, we see the
“number in itself’. A finite mind is, however, limited in how
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large numbers it can represent authentically. Humans, in
particular, may not be able to conceive authentically numbers
greater than, say, ten or twelve. Since arithmetic presupposes
arbitrarily large numbers, it therefore has to be based on some
other conception of number, namely one according to which
numbers are not authentically, but rather “symbolically” given
(190-92). In a symbolic, or “inauthentic” representation, a
number is given to us only indirectly, through a sign (193-94).
The second conception of number is just such a symbolic
conception, and it, according to Husserl, is the conception of
number assumed in arithmetic.

Although arithmetic thus assumes numbers to be
symbolically, and not authentically, represented, it would seem
odd to say that symbolic, or inauthentic, representations lie at
the foundations of arithmetic; for this would be to say that the
science of number is based on representations in which
numbers are in fact not properly given to us. Rather, one would
expect that authentic representations of numbers in some way
provide a foundation for symbolic representations of numbers
and, thereby, also for arithmetic.

It 1s, however, difficult to see precisely how Husserl’s
account of symbolically given numbers is to be grounded in his
account of authentically given numbers. The impossibility for
us to form authentic representations of numbers larger than,
say, twelve stems from the impossibility for us to form
authentic representations of sets with more than that number
of elements. For larger sets we are confined to symbolic
representations. For instance, the set representation that we
form when we enter a lecture hall and see a large audience is,
in the typical case, only symbolic. Husserl provides a detailed
account of such symbolic set representations (195-218). This
account does, however, not play any role in Husserl’s account of
symbolically given numbers (contrary to what Husserl seems to
suggest at 222-23). In particular, a symbolic representation of a
number 1s not, according to Husserl’s account, obtained by
abstraction from a symbolically conceived set. Rather, Husserl’s
introduction of symbolic numbers follows an entirely different
plan, with no reliance on symbolic sets or abstraction.
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It is true that, at the initial stages of the introduction of
symbolic numbers authentic number representations are
involved. Symbolic numbers are introduced through a
(potentially infinite) system of signs. Husserl prefers a system
in base X that employs addition, multiplication, and
exponentiation for forming numbers larger than X (228-33).
Examples of numbers in this system are therefore X, (2 x X) + 3
and (3 X X2) + 4 (assuming that X is greater than 4). When X is
10, these symbolic numbers are just decimal numbers written
out completely. Authentic number representations are involved
in the description of these symbolic numbers through the
requirement that the base number X be authentically given.
That is, there is some freedom in choosing X, but it has to be a
number of which we can form an authentic representation.

Once in place, this decimal-like system yields, according
to Husserl, a unique representative for each number in itself
(Zahl an sich). That is, we get a unique representative for each
number as it is given in an authentic representation, or rather:
as it would be given in an authentic representation, if we could
form such a representation (260). But it is unclear how the
existence of such a one-to-one correspondence can be justified
for numbers that we cannot authentically represent to
ourselves. The thought is perhaps that since there is a one-to-
one correspondence for each of the numbers up to X, there is
one as well for any number built up from these numbers, just as
the numbers in the described system are. But this is a non
sequitur. If, for instance, we can have no authentic
representation of numbers greater than twelve, then how can
we possibly know that, say, (3 X 102) + ( 7 X 10) + 1 is the unique
representative of a number in itself, the true three-hundred-
and-seventy-one? Although the symbolic number in question is
built up from numbers—3, 10, 2, 7, 10, 1—each of which may be
taken to correspond uniquely to a number in itself, we have no
guarantee that the same can be said of a number formed
through addition, multiplication, and exponentiation from
these. These operations may well take us out of the range of
authentically representable numbers; and for any number
outside that range, we have no way of ascertaining whether it
has a unique representative in the system of symbolic numbers.
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Since sufficiently large numbers are inaccessible to us,
we thus seem to have no way of assessing claims regarding
their relation to symbolic numbers. A similar problem affects
Husserl’s whole conception of numbers as abstractions from
sets. If we are in principle denied knowledge of numbers
sufficiently large, then what right do have to claim, for
instance, that there are infinitely many numbers? For all we
know, the sequence of numbers in themselves might terminate
at some point outside the range of authentically representable
numbers. And how can we be certain that the numbers are
linearly ordered? Perhaps at some point far out in the number
sequence there is a number that has two immediate successors.
If only an initial segment of the number sequence is accessible
to us, then we have no right to exclude the possibility of such a
situation. That no such situation arises in the part of the
number sequence that we do have access to is no proof that it
cannot arise in some part that we do not, and indeed cannot,
have access to.

There is anyway something strange in developing an
account of number and operations on numbers and then go on
to say, as Husserl does (190-92), that arithmetic is in fact
grounded on an entirely different account of number. Indeed,
Husserl thinks that if we could conceive of any number in the
way the first account describes, then there would be no
arithmetic, since then all relations among numbers would be
immediately evident to us (191).3 The existence of arithmetic
thus shows that the first account cannot be our only account of
number. The difficulty in seeing how the first account might
serve as a foundation for the second account suggests, to my
mind, that we might as well forget about it altogether as an
account of number. What is presented in the first part of
Philosophy of Arithmetic should be regarded as an account of
finite sets, not as an account of number. We are there given a
detailed account of the conception of finite sets; but the
abstraction theory of number that is based on it is idle, since it
cannot serve as a foundation of arithmetic.

I should emphasize that my criticism here does not
concern the distinction between authentic and symbolic
representations as such. This i1s clearly an important
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distinction, as witnessed by its refined reappearance in
Husserl’s epistemology from the Logical Investigations onwards
as the distinction between an intention and its fulfilment. The
problem in the Philosophy of Arithmetic is not the invocation of
this distinction as such, but rather the use Husserl makes of it:
he posits objects of which authentic representations are in
principle excluded. He says that there are such and such
objects, although we shall never be able to see them with
evidence, we shall never have proper knowledge of them. The
positing of such knowledge-transcendent objects is, to my mind,
quite foreign to phenomenology. The phenomenological point of
view is a first-person point of view, so a phenomenologist’s
positing of objects should always be accompanied by a
description of how such objects can be given to us. Husserl does
quite the opposite when he posits certain objects and, at the
same time, denies that they can ever be given to us.*

4. We are thus led to explore the prospects of Husserl’s
second account of number as self-standing, without the
spurious support from the account of numbers as abstractions
from sets. The main tenet of the resulting philosophy of
arithmetic—however it is worked out in detail—s that
numbers are symbolically constituted objects. Numbers are
given by a system of meaningful symbols; not, however, in the
sense that the “numbers in themselves” are mirror images of
these symbols—as Husserl seems to have held—but in the
sense that the numbers are these very symbols. There is no
number in itself apart from the meaningful symbol that you see
on the page in front of you. Apart from a short remark at the
beginning of section 6 below, I shall not discuss here whether
this can be taken to be Husserl’s own philosophy of arithmetic
at any point of its development. It does, in any event, seem to
me to be an eminently phenomenological philosophy of
arithmetic. Working out the details will require considerable
effort. Here I wish only to note some possible sources of
inspiration from the second part of the Philosophy of
Arithmetic.

Symbolically constituted numbers are, as already noted,
introduced through a system of signs. Husserl considers several
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alternative sign systems: apart from the base-X system, which
he prefers, also a unary system (228); a “non-systematic”
system (sic), where numbers are given only provisional
definitions in terms of auxiliary number signs and addition
(224-5); and a system where the numbers are generated in the
natural order, but where each number is named quite
independently of the names of smaller numbers, unlike what is
the case in the base-X and the unary system (226-7).

Since we regard symbolically constituted numbers as
self-standing, we cannot follow Husserl in his preference for the
base-X system. This system, namely, relies on the arithmetical
operations of addition, multiplication, and exponentiation; and
we cannot take an understanding of these for granted when we
first introduce the numbers. Husserl could perhaps do so, since
he took symbolic numbers to correspond to numbers as
abstractions from sets, and for these he had given an account of
the basic arithmetical operations (182-90). We cannot do the
same, however, since we have rejected this account of number
and wish to consider symbolic numbers as self-standing. (The
positional system in base X, in which, for instance, (3 X X?) + (7
x X) + 1 1s written “371” does not avoid the reliance on addition,
multiplication and exponentiation either, since it is merely an
abbreviation of the more long-winded base-X system that
Husserl employs.?)

From the foundational point of view, a unary system
must be preferred. It should, however, not be formulated as
Husserl formulates it (228), in terms of successive additions
of 1. The numbers would then be introduced as 1, 1+1, 1+1+1,
..., 50 we should again be relying on addition. It is true that we
here invoke only a special case of addition, namely where the
second argument is 1. But addition as such is a binary function
defined on all pairs of numbers, so we need to see (1+1)+1, say,
as an instance of the general form m + n. Since it is not by this
general form that the numbers are generated, we cannot regard
addition as being defined simultaneously with the introduction
of the numbers. Rather, the definition of addition has to wait
until we have explained how the numbers are generated. For
the generation of the numbers in the first place, we should rely
on a successor function and the basic number 0. (These
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primitive notions may be regarded as being explained
simultaneously with the introduction of the numbers.) The
numbers are thus generated as 0, s(0), s(s(0)), s(s(s(0)))...
Addition, multiplication, and exponentiation can then later be
defined by well-known recursion equations.b

5. We thus take numbers to be introduced as 0, s(0),
s(s(0)), s(s(s(0)))... It 1s, however, obvious that not all numbers
are given in this unary form. The number 371 in the decimal
positional system, for instance, is not so given, nor is, say, 7 X 5.
Clearly, we do not want to be forced to say that these are not
numbers. They do not look like numbers as introduced by the
unary system, but they are numbers nevertheless. An
important idea in the second part of the Philosophy of
Arithmetic is the distinction between what Husserl calls normal
and problematic numbers (261). Normal numbers are numbers
in introductory form, whereas problematic numbers are
numbers in non-introductory form. Employing this terminology
we can say that 371 and 7 X 5 are indeed numbers, but
problematic numbers. They are not called problematic because
their status as numbers is somehow problematic. Rather, they
are called problematic because each poses—or, better, is—a
problem, or a task (Aufgabe), namely that of reduction to
normal form. In particular, each of the numbers 371 and 7 X 5
is a task of reduction to a number in the form of 0 followed by
some number of iterations of the successor function.

Husserl’s immediate aim in introducing the distinction
between normal and problematic numbers is to be able to say
when two symbolically given numbers are identical. It is
natural to stipulate that not only any problematic number, but
also any normal number is a task: a normal number is the
trivial task that is solved by itself. In terms of reduction to
normal form, we thus stipulate that a normal number reduces
to itself. As a consequence of this stipulation, it will make sense
to speak, for any number, of its reduction to normal form. Two
symbolically constituted numbers can then be said to be
identical if they reduce to the same normal number. For
instance, the numbers 7 X 5, 27 + 8, 35 and s35(0) are all
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identical to each other, since each reduces to s35(0) that is, 0
followed by thirty-five iterations of the successor function.

Contained in these stipulations are both a criterion of
application and a criterion of identity for numbers. Recall that a
criterion of application associated with a concept C determines
what it is for an object to fall under C; and that a criterion of
identity associated with C determines what it is for objects
falling under C to be identical.” We take numbers to be
introduced as 0, s(0), s(s(0)), s(s(s(0)))... These are the normal
numbers. By the introduction of numbers we thus know what a
normal number is. A number quite generally can then be said to
be a task of reduction to a normal number. This is the criterion
of application for numbers. The criterion of identity says that
numbers are identical if they reduce to one and the same
normal number.

These criteria of application and identity for numbers
agree with those given by Per Martin-Loéf as part of the so-
called meaning explanations for his constructive type theory
Martin-Lof 1984). The numbers—or, more precisely, the
natural numbers—are there an instance of the more general
concept of a type of individuals. A type A of individuals is
defined by laying down how the elements of normal form of that
type are constructed. Thus, one defines a type of individuals by
displaying a mode of generation of its normal-form elements, in
a manner similar to how numbers were introduced above as O,
s(0), s(s(0)), s(s(s(0)))... In this context elements of normal form
are usually called “canonical elements”. From the definition of
A we thus know what the canonical elements of A are. The
criterion of application for A is then formulated as follows:

an element a of a set A is a method (or program) which, when

executed, yields a canonical element of A as result (Martin-Lof
1984, 9)

A canonical element of a set is a method that yields itself as
result when executed, hence any canonical element of A is also
an element of A according to this criterion. The criterion of
identity for A is formulated as follows:

two arbitrary elements a, b of a set A are equal if, when executed, a
and b yield equal canonical elements of A as results (ibid.).
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The similarity between these explanations and those we
extracted above from the Philosophy of Arithmetic should be
obvious. We took a number to be a problem, or task, of
reduction to normal form, and we may think of such a problem
as a programme which, when executed, yields a normal-form
number; and we took numbers to be identical if they reduce to
the same normal-form number, that is, the same canonical
number. This similarity may not be a coincidence: the thesis
that mathematical objects quite generally (not only numbers)
are symbolically constituted is a philosophy of mathematics
that is quite congenial to the spirit of constructive type theory.

The task presented by a number is solved by calculation.
Thus the reduction of 7 X 5 to s35(0) is just the calculation of 7 X
5, a calculation whose result is s35(0). Calculation itself may be
regarded as the unravelling of definitions. For instance, 7 is
defined as s(6), 6 is defined as s(5), 5 is defined as s(4), etc.
Moreover, we have definitions of functions such as addition,
multiplication, and exponentiation. Employing these definitions
we reduce a number by continued substitution of definiens for
definiendum.® Thus, from the defining equations of
multiplication we find that 7 X s(4) reduces to (7 x 4) +7, and
from the defining equations of addition that (7 x 4) + s(6)
reduces to s((7 x 4) + 6. Likewise we find that (7 X 4) + 6
reduces to s((7 X 4) + 5). Continuing this procedure we shall
eventually reach s35(0). The conception of calculation as the
unravelling of definitions, later made precise by Kleene, Curry,
Martin-L6f and others,® is not quite what one finds in the
Philosophy of Arithmetic, but it can be found in Logical
Investigations VI §18 (Husserl 1901), where Husserl describes
in some detail the reduction of the number (53)4 to unary form.
(At this point, therefore, Husserl seems to prefer the unary
form as the normal form; indeed, in the cited section he in effect
says that a decimal number is a task of reduction to unary
form.)

6. The section of the Logical Investigations just cited is
part of a discussion of the notions of intention and fulfilment.
Husserl suggests that we may regard the substitution of
definiens for definiendum as a step of partial fulfilment;
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complete fulfilment is then reached with what Curry calls the
ultimate definiens, an expression that can no longer be reduced.
Given the understanding of such a process of substitution as a
calculation, this section of the Investigations thus suggests that
we think of the relation between a problematic and a normal
number as the relation between an intention and its complete
fulfilment. In the theory of fulfilment in the Investigations
complete fulfilment is achieved by the presence of the intended
object itself. And indeed, in the cited section Husserl speaks of
the end result of the process of substitution as the “number
itself”. Here, therefore, the number itself is just the meaningful
expression that is the number in its unary form, quite in line
with the doctrine currently being explored. Normal numbers
have thus taken over the role of numbers in themselves. There
is, for instance, nothing beyond the meaningful symbol
s(s(s(0))) that is the number three itself. Rock bottom has been
reached already with this normal form.

It was already noted that the pair of notions of intention
and fulfilment has a precursor in the pair of notions of
inauthentic, or symbolic, and authentic representations. That
we may think of the relation between a problematic number
and the normal number to which it reduces in terms of the
former pair of notions suggests that we may also think of it in
terms of the latter pair of notions. For Husserl, of course, a
symbolically constituted number cannot be authentically
represented: for him, only numbers as abstractions from
(authentically represented) sets can be so represented. But, for
us, since we here take normal-form numbers to play the role of
numbers in themselves, it is natural to say that such numbers
are authentically given, whereas numbers in problematic form
are inauthentically given. That is, it is natural to say, for
instance, that the number s(s(s(0))) is here authentically given,
whereas 2 + 1 is the same number inauthentically given.

We then recognize a phenomenon that was central in
Husserl’s original employment of this terminology: of
sufficiently large numbers it is physically impossible for us to
achieve an authentic representation, though we shall always be
able to construct an inauthentic representation. Take, for
instance, the number 1010"°. We have no choice but to present
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this number inauthentically, since an authentic representation
of it, consisting of a sequence of s’s appended to 0O, is out of
reach for us.!® (This point does not depend on the use of the
unary system: when numbers get sufficiently large, we cannot
write them out in the base-X positional system either.) That an
authentic representation of 1010 is out of reach for us is,
however, not to say that we need to withhold judgement as to
whether this number in fact exists. The number 1010" is a well-
defined problem, we know precisely what it means to calculate
it. And given our criterion of application for numbers, this is all
that is required for us to have the right to say that this is
indeed a number, that this number exists. The contention that
sufficiently large numbers can only be inauthentically
represented therefore does not, for us, lead to any doubts
regarding the existence of large numbers, as it does in Husserl’s
original theory.

7. A final pair of notions that we shall invoke in
elucidating the relation between problematic and normal
numbers is the pair of sense and reference. It has been noticed
by several readers of (Frege 1892) that the relation between the
sense of an expression and its reference may, at least in some
cases, be understood as the relation between a programme, or
task, and the result of its execution.!! Frege himself suggests
this idea in a Nachlass piece:

“q7 Q¥ “4-2)2” are only different signs for the same, whose

difference merely indicates the different ways along which one may
reach the same thing. (Frege 1983, 95)

Thus, different signs for the same thing indicate different ways
leading to that thing. But a way leading to a certain goal is just
what a programme or method 1is.!2 In light of the
sense/reference-distinction, the quoted passage can be read as
saying that “4”, “22” “(-2)?" express different senses, whose
difference indicates different ways of reaching the same
reference. Indeed, the root of the words “Sinn” and “sense” has
to do with locomotion and can mean way or route.l3 A remnant
of this root meaning can be seen when these words are used
today to mean direction. Taking advantage of this etymology,
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we might say that the sense of an expression charts out a route
to its reference. In a similar way, a problematic number, being
a task, or a programme, can be said to chart out a route to a
normal number, namely the route that we follow when solving
the task, or executing the programme. It is therefore natural to
say that a problematic number stands to the normal number to
which it reduces as sense stands to reference. The fact that
syntactically different problematic numbers may evaluate to
the same normal-form number then reflects the fact that
different senses may determine the same reference.

The reduction of a problematic number to its normal
form can be represented by a sequence of numbers in which
each element is obtained from the previous one by reduction on
the basis of definitions. For instance, the reduction of 2 + 1 to
s3(0) may be represented as the sequence

2+1) - 2+s((0) = s@2+0) = s(2) — s(s(1)) — s(s(s(0)))

Although all elements of this sequence are identical, they are
also all of them syntactically different from each other. In the
terminology of sense and reference we may say that we here
have different senses determining one and the same reference.
Frege would certainly say that this reference is an object—the
number three—that exists apart from this sequence of senses.
For us this is not so. For us, the object in question is the final
element of the sequence, viz. s(s(s(0))). The reference in this
case thus resides at the same level as the senses determining it.
Our adoption of the sense/reference-terminology was suggested
by the understanding of the sense of an expression as a
programme the result of executing which is the corresponding
reference. According to our criterion of application for numbers,
any number is a programme. A normal-form number, in
particular, is a programme the result of executing which is
itself. It must therefore be regarded as a sense that determines
itself as reference. In a normal-form number we thus have a
collapse of sense and reference.

8. It should be clear by now that the philosophy of
arithmetic that has been explored here is not the doctrine that
the objects of arithmetic are meaningless signs, a view Husserl
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himself criticizes in the Philosophy of Arithmetic (e.g. 170-178).
The doctrine explored is rather that the objects of arithmetic
are meaningful symbols. Unlike objects such as trees, books,
and people, numbers are symbolically constituted: a number is
nothing apart from the meaningful expression that presents it;
the number is there in the expression. We can of course
consider an expression as a formal entity devoid of sense, but in
that case, what we see is not a number, but a certain “formal
object” (to use another piece of terminology from Curry). In the
usual object-directed attitude, by contrast, the expression is
regarded as meaningful, and then we see, for instance, the
number 7 X 5. What the meaning of this expression is we in
effect specified when giving the criterion of application for
numbers: the meaning is specified by saying that 7 X 5 is a
programme for obtaining a number in normal form. That this is
indeed a notion of meaning was brought out by our invoking
Frege’s sense/reference-distinction to illuminate the relation
between a programme and the normal number that it yields
upon calculation.

A natural question now is whether the view explored
here can be extended to all of mathematics: can we say that not
only the objects of arithmetic, but in fact all mathematical
objects are symbolically constituted? What we cannot say, it
seems, is that all mathematical objects are senses as explicated
here, viz. programmes of reduction to normal form; for it should
not be expected that all mathematical objects can be regarded
as such programmes. In particular, a doubt may arise
concerning functions. A programme as understood here is
something that can be calculated, or reduced, to normal form.
We do, however, not calculate a function such as the
multiplication function, X, in isolation. What is calculated is
rather 7 X 5 or 3 X 10 or any other result of supplying the
multiplication function with two numbers as arguments.

Although a function is thus not a programme in the
specified sense, that is, an object of calculation, and therefore
not a sense as explicated here, we may nevertheless regard it as
a meaningful symbol. For instance, we can take the meaning of
X to consist in the fact that when supplied with two numbers as
arguments we get a programme that can be calculated to
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normal form, say by relying on the definition of expressions of
the form m X n. Assuming that we have explained what it is to
be a function quite generally in some such way,* then we
should have made important steps towards the justification of
viewing functions as symbolically constituted objects. That in
turn would be an important step towards extending the work
Husserl began in the second part of the Philosophy of
Arithmetic to a general philosophy of mathematics.

NOTES

1 All page references given without any further specification are to the
Husserliana edition of the Philosophy of Arithmetic (Husserl 1891).

2 For a more detailed overview of the contents of the Philosophy of Arithmetic,
see (Centrone 2010, ch. 1).

3 This claim is stronger than the claim that there is no arithmetic for an
infinite intellect; for it is here presupposed only that any number is
authentically conceivable, not that they are all authentically conceivable at
once.

4 A conclusion similar to that reached here is also reached in (Miller 1982, 77):
“Large numbers would seem to have no being whatsoever, if the act which is
their unity cannot be performed.”

5 Husserl’s preference for the more long-winded system stems, probably, not
only from the fact that it is more transparent, but also from the fact that the
positional system presupposes 1 and 0: from Husserl’s point of view these are
not unproblematically called numbers (129-34).

6 The need for using a separate successor function rather than the special case
of addition, m + 1, was seen by Dedekind. In (Dedekind 1888), where the
generation of the numbers by means of the successor function is made precise
(albeit by the use of impredicative methods), one also finds recursive
definitions of addition, multiplication, and exponentiation. Husserl had read
this work, was impressed by its rigour, but found that “in its strange
artificiality, it strays far from the truth” (125).

7 A concept with which both a criterion of application and a criterion of
identity are associated is usually called a sortal concept. The notion of a
criterion of identity is often traced back to (Frege 1884, §62). The term
“criterion of application” stems from (Dummett 1973, 74).

8 If the definition of a function is given in terms of variables, then besides
substitution we also a need to rely on instantiation. For instance, from the
definitional equation x + s(y) = s(x + y) we get 7 + s(4) = s(7 + 4) by
instantiation.

9 See (Kleene 1952, esp. §54) and (Curry and Feys 1958, esp. ch. 2E).

10 Consider the problem of printing this many s’s. A quick calculation shows
that if we print, say, 1000 s’s per second, then a conservative estimate of the
number of years required is the number written in decimal notation as 1
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followed by a milliard zeros. In comparison, the number of years written in
decimal notation as 1 followed by 11 zeros is already larger than the
estimated age of the universe.

11 See, for instance, (Dummett 1991, 123), stemming from lectures given in
1976, or (Tichy 1988). An unpublished lecture by Martin-Lof given in 2001
should also be mentioned, since it has been important for the current
presentation.

12 The Greek word methodos is a combination of meta and hodos, and the
primary meaning of this latter word is way or route.

13 See Pokorny’s Indogermanisches etymologisches Wérterbuch s.v. “sent-”

14 A part of the general explanation would be: f is a function if f(n) is a number
whenever n is a number. This explanation presupposes that all functions are
total, namely that f(rn) is always a programme that in fact yields a normal
number upon evaluation, whichever number n might be. It would therefore
not work for Husserl’s conception of functions (or operations, in his
terminology) if it is right, as Centrone (2010) has stressed, that Husserl
allows partial functions.
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